Computation meets Data Science in London, Thursday 5 March

Computation meets Data Science in London, Thursday 5 March

I'm usually going on about "computation" or in education, "maths". But I've come to appreciate just how much of computation's utility in modern life centres around data (rather than, say, algebraic modelling).

Clearly data science is a major, growing and vital field—one that's relatively new in its current incarnation. It's been born and is driven forward by new technology, our abilities to collect, store, transmit and "process" ever larger quantities of data.

But "processing" has often failed to elucidate what's important in the data. We need answers, not just analytics, we need decisions not just big data.

Read More

What are the modern areas of maths?

Traditional areas of maths like algebra, calculus or trig don't seem a good way to think about subdividing the subject in the modern world.

You might ask, why subdivide at all?

In a sense, you shouldn't. The expert mathematician utilises whichever maths areas helps them solve the problem at hand. Breadth and ingenuity of application is often key.

But maths represents a massive body of knowledge and expertise, subdividing helps us to think about different areas, for curricula to focus their energies enough that there's sufficient depth of experience gained by students at a given time to get a foothold.

However I believe the subdivisions should be grouped by modern uses of maths, not ancient divisions of tools.

So here goes with our 5 major areas:

  • Data Science (everything data, incorporating but expanding statistics and probability).
  • Geometry (an ancient subject, but highly relevant today)
  • Information Theory (everything signals--whether images or sound. Right name for area?).
  • Modelling (techniques for good application of maths for real world problems)
  • Architecture of Maths (understanding the coherence of maths that builds its power, closely related to coding).

Comments welcome!

PISA results: Let's win on the right playing field, not lose on the wrong one

PISA results: Let's win on the right playing field, not lose on the wrong one

Today's maths PISA results are predictable in the successes that many Asian countries show and the mediocrity of many of the traditional Western countries--like the UK. 

I believe PISA is meticulous in conducting its tests and reflects a good evaluation of standards of today's maths education. And yet I think if countries like the UK simply try to climb up today's PISA assessment, they'd be doing the wrong thing.

Read More

Excited: Raspberry Pi gets free Mathematica + Wolfram language

Excited: Raspberry Pi gets free Mathematica + Wolfram language

I was very excited at our CBM summit this morning with Eben Upton to announce that Mathematica will be bundled on the Raspberry Pi computer for free, and so will the new Wolfram Language--also announced today.

This really has at least 4-dimensions of consequence:

Read More

Collaborating with UNICEF: next month's CBM summit on fixing world's maths

Collaborating with UNICEF: next month's CBM summit on fixing world's maths

Fixing maths education is becoming ever more central to individual life-chances and our societal needs.

So I am very pleased that we're able to collaborate with UNICEF on our 3rd CBM summit, holding it at their headquarters in New York City on November 21-22.

Read More

Maths v. Music Education

Maths v. Music Education

I was debating Computer-Based Maths education (CBM) with a sceptic before the summer and he brought up the analogy of music education to support various claims he was making of maths.

As I understood his central point it was that practising hand calculations is akin to practising music pieces--it's simply the way to learn to play. Also there was some attempt to draw the analogy between listening to music and CBM, whereas playing was like traditional hand-calculating maths.

Read More

Announcement: our first CBM country

Announcement: our first CBM country

I'm very excited to announce that computerbasedmath.org has found the first country ready for our completely new kind of maths education: it's Estonia. (...and here's the press release).

I thought Estonia could be first. They are very active on using technology (first to publish cabinet decisions immediately online, first to include programming in their mainstream curriculum), have ambition to improve their (already well respected) STEM aptitude and lack the dogma and resistance to change of many larger countries. There aren't so many countries with all those characteristics.

Read More

Where does programming fit in education?

It's great that programming is coming to the fore in UK education and that this new-found enthusiasm is starting to spread to the US.

But where does programming fit with ICT, computer science and maths? How central a subject is it?

What's termed ICT seems to be "how to operate your computer...or generic applications on it...or even past computing forms like calculators". Frankly children are often good at operating the latest tech--usually better than their teachers. Primary schools need to help, verifying that they can do basic operations and offer remedial, individual help if not, but this "operating your computer" should not be a subject per se and is far from programming in subject-matter and required skillset.

What about computer science? It's the specialist subject of how you optimise programs, programming, build large-scale software or even design new programming languages. Important though this is, attaching programming only to CS is too narrow a viewpoint.

Instead, programming is much more fundamental to STEM: it's the way you communicate technical ideas and processes in the modern world. It's as central as that.

You can view it as a superset evolution of mathematical notation, far more general and with the immediate consequence of machine computable results. Programs are the way you write down maths.

And so I believe programming is an integral, core part of maths education. It's the hand-writing of technical ideas and just like hand-writing is in the early years attached to learning English (if you're in England!), so core, basic programming should be attached to maths.

programing.png

To be clear, I'm not talking calligraphy, but basic hand-writing. Calligraphy is the CS end--the subject in which you study programming in its own right, its nuances, detailed optimisation. Hand-writing is the basic tool, to let everyone communicate. Just like hand-writing is more generally applied than in English, programming is more generally applicable than is today's perception of maths' applicability in schools (though not than maths' actual utility). Whether in geography, economics or science, technical problem solving needs maths and the way you write down and do anything but trivial arithmetic is with programming.

I'm not knocking the new efforts with programming. Far from it. I'm all for getting programming into education under whatever guise is easiest. If making ICT "rigourous" is the politically expedient way, starting there is fine so long as we recognise it just as the start.

It would be folly indeed if in the very country where a mathematician invented the computer and effectively the concept of programming, we should fail to see the crucial integration of programming with maths education.

(Perhaps if Alan Turing had lived longer, computer science would have been generally considered a part of maths, not a separate discipline--just like mechanics or statistics usually are today).